Прогнозирование потребностей в перевозках людей и грузов

Мало того, что потребности в перевозках носят стохастический характер, для отдельных моментов времени их просто трудно определить, так как для этого необходимо было бы провести исследование перемещений больших групп населения. Целесообразность получения такой информации должна подвергаться всесторонней оценке, так как затраты на ее получение могут достигать сотен тысяч долларов. Кроме того, в столь обширных исследованиях качество информации может весьма невысоким из-за отсутствия непосредственного контроля за сборщиками информации [9].

При прогнозировании потребностей в перевозках часто используется метод множественной регрессии. Так, на основе уравнения множественной регрессии, учитывающего такие показатели, как валовый национальный продукт, национальный научно-технический уровень, объемы грузопотоков, коэффициент промышленного роста и ряд других, были предсказаны объемы воздушных грузовых перевозок и, как следствие, необходимые для этого объемы производства транспортных самолетов. Коэффициенты регрессии в этом случае определялись на основе исходных данных стандартным методом наименьших квадратов. При исследовании транспортных перевозок чикагского региона применение регрессии, учитывающей такие показатели, как количество владельцев автомобилей и плотность населения, позволило довольно точно оценить количество поездок, приходящихся на одну семью. В этом исследовании использовались методы нелинейной интерполяции, в частности полиномы и функции Гаусса для интерполяции нелинейных временных зависимостей числа автобусных и автомобильных поездок, приходящихся на одного жителя.

Более сложным и потому реже используемым методом прогнозирования является факторный анализ. Этот метод состоит в комбинировании большого числа входных переменных в существенно меньшее число групп, включающих сильно коррелирующие переменные. Иногда данный метод используется перед применением регрессионного анализа, благодаря чему последний становится более эффективным.

При прогнозировании потребностей в перевозках людей и грузов возможно также применение имитационных моделей, реализованных на ЭВМ. Обсуждение некоторых наиболее значительных имитационных моделей будет дано при рассмотрении одного из следующих этапов общей схемы исследования. Основное назначение данной модели состоит в предсказании требований к оборудованию летательных аппаратов (прогноз выполняется на срок до 10 лет путем обработки данных о функционировании авиалиний США за предыдущий десятилетний период). Хотя первоначально эта модель предназначалась для предсказания конъюнктуры рынка, тем не менее оказалось возможным прогнозировать тенденции изменения характеристик воздушного транспорта (например, необходимость в новых системах авиалиний, рост объемов перевозок и их стоимости, развитие средств обслуживания пассажиров, улучшение перевозки багажа и грузов, технического обслуживания самолетов, а также общей стоимости системы воздушных сообщений). Метод имитационного моделирования оказался наиболее подходящим для решения задачи, поставленной фирмой Lockheed и имевшей целью формирование требований к развитию большого числа различных авиалиний США.

Для руководителей какой-то определенной авиакомпании вполне естественным является желание предсказать те требования, которым должна отвечать эта авиакомпания, чтобы в будущем выстоять в конкурентной борьбе (возможно, при таком анализе некоторые конкуренты будут выделены особо). С помощью упомянутой модели можно решить эту задачу практически для любой авиакомпании США. Решение осуществляется путем сведения некоторого числа частных требований, составленных сточки зрения отдельной авиакомпании в общую систему требований с последующей конкретизацией оценок, полученных в такой укрупненной модели. Другими словами, данный подход позволяет получать детальный обзор взаимосвязанных характеристик отдельных авиакомпаний. Подобные возможности рассматриваемой модели являются уникальными, и, видимо, имеет смысл попытаться разобрать аналогичные модели и для других видов транспорта, таких, как грузовой автомобильный, железнодорожный и морской транспорт.

Рассмотрим теперь более подробно методы прогнозирования применительно к городскому транспорту. Используемые в данном случае так называемые модели распределения поездок включают в себя модели развития, конфликтующих возможностей, равных возможностей, предпочтений и притяжения. Эти модели построены на различных теоретических предположениях относительно того, каким образом локализация пунктов отправления и назначения, объем перевозок и другие элементы транспортной системы взаимосвязаны с остальными выходными переменными. В качестве последних выступают такие параметры, как планируемый рост тарифов, коэффициенты реальной занятости, расположение торговых зон или зон развлечений и отдыха, пространственное и временное разделение различных городских территорий, факторы привлекательности тех или иных районов города.

Перейти на страницу: 1 2 3 4 5


Меню