Построение описательной экономической модели.

Данная работа будет посвящена анализу связи между количеством абонентов в сети, средней ежемесячной выручкой от продажи услуг в расчете на одного абонента (ARPU) и чистой прибылью оператора связи на конец отчетного периода.

Исходя из сделанного предположения строим эконометрическую модель

, которая относится к классу факторных статических моделей:

y=f(x1, x2)

где x1 - количество абонентов в сети (объясняющая переменная)

x2 - средняя ежемесячная выручка от продажи услуг в расчете на одного абонента (ARPU) (объясняющая переменная)

y - чистая прибыль (зависимая переменная)

Чтобы убедиться в том, что выбор объясняющих переменных оправдан, оценим связь между признаками количественно, для этого заполним матрицу корреляций:

Таблица 2. Матрица корреляций между исходными статистическими признаками

x1

x2

y

x1

1

-0,97

0,72

x2

-0,97

1

-0,71

y

0,72

-0,71

1

Анализируя матрицу корреляций, можем сделать вывод о наличии сильной положительной связи между количеством абонентов и чистой прибылью оператора. В то же время также существует сильная отрицательная связь ARPU и чистой прибылью.

Для дальнейшего исследования модифицируем модель к виду парной регрессии: y=f(x1).

Для выбора функциональной формы модели проанализируем корреляционное поле:

Рисунок 2. Корреляционное поле (x1 - кол-во абонентов в сети, млн. чел.; y - чистая прибыль оператора

Визуальный анализ показывает, что для построения модели вполне подойдет степенная функция:

Для дальнейшего исследования приведем наше уравнение к линейному виду. То есть:

,

где .

Таким образом, все дальнейшие исследования будем проводить с этим уравнением.

Оценка параметров модели.

Проведем оценку параметров модели при помощи различных способов.

Метод средних.

Предположим, что изменение чистой прибыли обусловлено только изменением количества абонентов (т.е. α0 = 0). Тогда оценка a1 и a2 неизвестного параметра α1 и α2 определится по формулам:

Тогда модель принимает вид: y=4,7985×x1,35881+e.

Метод выбранных точек.

Проанализируем корреляционное поле и выберем точки, которые ближе всех лежат в предполагаемой прямой линии, описывающей модель. Это будут точки 4 кв. 2004 г. (209,1; 34,22) и 2 кв. 2007 г. (507,9; 74,67).

Перейти на страницу: 1 2 3


Меню